

27. Suppose, the first positive integer = x, The second consecutive positive integer = x + 1

According to condition,

 $(x)^{2} + (x + 1)^{2} = 365$ $\therefore x^{2} + x^{2} + 2x + 1 = 365$ $\therefore 2x^{2} + 2x + 1 - 365 = 0$ $\therefore 2x^{2} + 2x - 364 = 0$ $\therefore x^{2} + x - 182 = 0$ $\therefore x^{2} + 14x - 13x - 182 = 0$ $\therefore x(x + 14) - 13(x + 14) = 0$ $\therefore (x - 13)(x + 14) = 0$ $\therefore x - 13 = 0 \quad \text{OR} \quad x + 14 = 0$ $\therefore x = 13 \quad \text{OR} \quad x = -14$

But x = -14 is not positive integer, therefore, required two consecutive positive integers will be 13 and 14.

$$28. \quad x^2 - 3x - 10 = 0$$

$$\therefore x^{2} - 5x + 2x - 10 = 0$$

$$\therefore x(x - 5) + 2(x - 5) = 0$$

$$\therefore (x - 5) (x + 2) = 0$$

$$\therefore x - 5 = 0 \text{ OR } x + 2 = 0$$

$$\therefore x = 5 \text{ OR } x = -2$$

$$\therefore \text{ The roots of this equation : 5, -2}$$

29. Here a = 2, d = 7 - 2 = 5, n = 15

we have,
$$a_n = a + (n-1)d$$

- $\therefore a_{15} = 2 + (15 1) (5)$
- $\therefore a_{15} = 2 + (14) (5)$

$$\therefore a_{15} = 2 + 70$$

$$\therefore a_{15} = 72$$

So, the 15th term of an AP is 72.

30.
$$2 \cot^2 45^\circ + \sin^2 30^\circ - \cos^2 60^\circ$$

= $2 (1)^2 + \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2$
= $2 + \frac{1}{4} - \frac{1}{4}$
= 2

31. LHS = $(cosec \ \theta - cot \ \theta)^2$

$$= \left(\frac{1}{\sin\theta} - \frac{\cos\theta}{\sin\theta}\right)^{2}$$
$$= \left(\frac{1 - \cos\theta}{\sin\theta}\right)^{2}$$
$$= \frac{(1 - \cos\theta)^{2}}{\sin^{2}\theta}$$
$$= \frac{(1 - \cos\theta)^{2}}{1 - \cos^{2}\theta}$$
$$= \frac{(1 - \cos\theta)(1 - \cos\theta)}{(1 - \cos\theta)(1 + \cos\theta)}$$
$$= \frac{1 - \cos\theta}{1 + \cos\theta} = \text{RHS}$$

32. We have, $\angle AOB + \angle APB = 180^{\circ}$ $\therefore 135^\circ + \angle APB = 180^\circ$ $\therefore \angle APB = 180^{\circ} - 135^{\circ}$ $\angle APB = 45^{\circ}$ $\therefore \angle OPB = \frac{1}{2} \angle APB$ $= \frac{1}{2} 45^{\circ}$ $\angle \text{OPB} = 22.5^{\circ}$ **33.** Volume of cube = x^3 $\therefore 1000 = x^3$ $\therefore x^3 = 10^3$ $\therefore x = 10 \text{ cm}$ l = 2x = 2(10) = 20 cm b = x = 10 cmh = x = 10 cmCSA of cuboid = 2 (lb + bh + hl) $= 2 \left[(20 \times 10) + (10 \times 10) + (10 \times 20) \right]$ = 2 [200 + 100 + 200]= 2 [500] $= 1000 \text{ cm}^2$ **34.** Here highest frequency is 16. :. Class = 3 - 5, h = 2, l = 3 $\therefore f_1 = 16$ $f_0 = 14$ $f_2 = 4$ We have, $Z = l + \left[\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right] \times h$ = $3 + \left[\frac{16 - 14}{2 \times 16 - 14 - 4}\right] \times 2$ = $3 + \frac{2 \times 2}{32 - 18}$ = $3 + \frac{4}{14}$ = $3 + \frac{2}{7}$ = 3 + 0.29Z = 3.29 $M + \overline{x} = 44 \qquad Z = 3M - 2\overline{x}$ $M - \overline{x} = 2 \qquad \therefore Z = 3(23) - 2(21)$ 35. 2M = 46 ∴ Z = 69 – 42 \therefore M = $\frac{46}{2}$ ∴ Z = 27 ∴ M = 23 $M + \overline{x} = 44$ $\therefore 23 + \overline{x} = 44$ $\therefore \overline{x} = 44 - 23$ $\therefore \overline{x} = 21$

36. Total number of marbles = 5 + 8 + 4 = 17

Total number of marbles = 17

(i) Suppose event A is getting a red marble.

$$\therefore P(A) = \frac{\text{Number of red marbles}}{\text{Total number of marbles}}$$
$$\therefore P(A) = \frac{5}{17}$$

(ii) Suppose event B is not getting a green marble,

i.e. getting red or white marbles

$$\therefore P(B) = \frac{\text{Number of red and white marbles}}{\text{Total number of marbles}}$$
$$\therefore P(B) = \frac{5+8}{17}$$
$$\therefore P(B) = \frac{13}{17}$$

- 37. A coin is tossed three times, then the result are HHH, HNT, HTH, THH, HTT, THT, TTH and TTT.
 - \therefore Total numbers of Result = 8
 - (i) Suppose a Coin is tossed three times A be the event "at most one head is found"

There are 4 results HTT, THT, TTH and TTT.

 \therefore The numbers of outcomes favourable to A = 4

:. P (A) =
$$\frac{4}{8} = \frac{1}{2}$$

- (ii) Suppose a Coin is tossed three times B be the event "the number of head is greater than the number of tails" There are 4 results HHH, HHT, HTH and THH.
 - \therefore The numbers of outcomes favourable to B = 4

$$\therefore P(B) = \frac{4}{8} = \frac{1}{2}$$

Section-C

- **38.** Let, $x^2 7 = 0$
 - $\therefore x^2 = 7$
 - $\therefore x = \pm \sqrt{7}$
 - $\therefore x = \sqrt{7}$ OR $x = -\sqrt{7}$
 - $\therefore \alpha = \sqrt{7} \text{ OR } \beta = -\sqrt{7}$

$$a = 1, b = 0, c = -$$

Sum of zeroes = $\alpha + \beta = \sqrt{7} - \sqrt{7} = 0 = \frac{-0}{1} = \frac{-\text{coefficient of } x}{\text{coefficient of } x^2}$

Product of zeroes = $\alpha \cdot \beta = \frac{c}{a} (\sqrt{7}) (-\sqrt{7}) = -7 = \frac{-7}{1} - \frac{c}{a} = \frac{\text{constant term}}{\text{coefficient of } x^2}$

39. We have,

 $\alpha + \beta = -\frac{b}{a} \qquad \alpha \cdot \beta = \frac{c}{a}$ $\therefore \quad 9 = -\frac{b}{a} \qquad 14 = \frac{c}{a}$ $\therefore \quad \frac{9}{1} = -\frac{b}{a} \qquad \frac{14}{1} = \frac{c}{a}$ $\therefore \quad a = 1, \ b = -9, \ c = 14$

So, one quardratic polynomial which fits the given conditions is $x^2 - 9x + 14$. you can check that any other quadratic polynomial which fits these conditions will be of the form $k(x^2 - 9x + 14)$, where k is real.

40. Here,
$$a = 16$$
, $d = 6 - 16 = -10$, $n = 30$
 $S_n = \frac{n}{2} [2a + (n - 1)d]$
∴ $S_{30} = \frac{30}{2} [2(16) + (30 - 1) (-10)]$
∴ $S_{30} = 15 [32 + 29 (-10)]$
∴ $S_{30} = 15 (32 - 290)$
∴ $S_{30} = 15 (-258)$

 $\therefore S_{30} = -3870$

So, the sum of first 30 terms will be -3870.

41. Here,
$$S_7 = 49$$
, $S_{17} = 289$, $S_n =$ _____
Now, $S_n = \frac{n}{2} [2a + (n - 1)d]$
 $\therefore S_7 = \frac{7}{2} [2a + (7 - 1)d]$
 $\therefore 49 = \frac{7}{2} (2a + 6d)$
 $\therefore 49 = 7 (a + 3d)$
 $\therefore a + 3d = 7$
Same as, $S_{17} = \frac{17}{2} [2a + (17 - 1)d]$
 $\therefore 289 = \frac{17}{2} (2a + 16d)$

Subtracting equation (2) from equation (1),

$$(a + 3d) - (a + 8d) = 7 - 17$$

$$\therefore \quad a+3d-a-8d=-10$$

 $\therefore 289 = 17 (a + 8d)$

 $\therefore a + 8d = 17$

 $\therefore -5d = -10$

$$\therefore d = 2$$

Put d = 2 in equation (1),

$$a + 3d = 7$$

$$\therefore a + 3(2) = 7$$

$$\therefore a + 6 = 7$$

$$\therefore a = 1$$

Now,
$$S_n = \frac{n}{2} [2a + (n - 1)d]$$

= $\frac{n}{2} [2(1) + (n - 1)2]$
= $n (1 + n - 1)$
= $n (n)$
 $\therefore S_n = n^2$

...(2)

...(1)

42. Suppose, A (4, -1) and B (-2, -3) connecting the line segment AB are the trisection points P and Q.

$$\therefore AP = PQ = QB$$

Here, point P divides AB internally in ratio 1 : 2.

: The co-ordinate of point

$$P = \left(\frac{1(-2) + 2(4)}{1+2}, \frac{1(-3) + 2(-1)}{1+2}\right)$$
$$= \left(2, -\frac{5}{3}\right)$$

Same as, point Q divides AB in ratio 2 : 1.

.:. The co-ordinate of point

$$Q = \left(\frac{2(-2) + 1(4)}{2+1}, \frac{2(-3) + 1(-1)}{2+1}\right)$$
$$= \left(0, -\frac{7}{3}\right)$$

Here OA = 10 cm PA = 8 cm

 $\overline{OP} \perp \overline{PA} \qquad \therefore \angle OPA = 90^{\circ}$

So from $\triangle OPA$,

 $OP^2 + PA^2 = OA^2$ $R^2 + 8^2 = 10^2$ $R^2 + 64 = 100$ $R^2 = 100 - 64$ $R^2 = 36$ R = 6 cm ∴ Diameter = 2R = 2(6)∴ D = 12 cm

44. We have, $r_1 = 13 \text{ cm}$ $r_2 = 5 \text{ cm}$

$$\overline{OP} \ \bot \ \overline{PB}$$

:. In \triangle OPB, $OP^2 + PB^2 = OB^2$ $5^2 + PB^2 = 13^2$ $25^2 + PB^2 = 169$ $PB^2 = 169 - 25$ $PB = \sqrt{144}$ PB = 12 cm

Length of chord = 2PB = 2(12) = 24 cm

45. Here we have, d = 42 cm

$$\therefore r = \frac{d}{2} = \frac{42}{2} = 21 \text{ cm} \quad \theta = 60^{\circ}$$

(a) Area of minor sector OAPB

$$= \frac{\pi r^2 \theta}{360}$$
$$= \frac{22 \times 21 \times 21 \times 60}{7 \times 360}$$
$$= \frac{11 \times 2 \times 21 \times 7 \times 3 \times 60}{7 \times 60 \times 3 \times 2}$$
$$= 11 \times 21$$

 $= 231 \text{ cm}^2$

(b) Here $\theta = 60^{\circ}$ so Δ OAB must be an equilateral triangle.

So if
$$OA = OB = 21$$
 cm

$$\therefore$$
 AB = 21 cm

Area of minor segment APB

= Area of mnior OAPB – Area of \triangle AOB

$$= 231 - \frac{\sqrt{3}}{4} \text{ side}^{2}$$
$$= 231 - \left(\frac{\sqrt{3}}{4} \times 21^{2}\right)$$
$$= 231 - \frac{441 \times \sqrt{3}}{4}$$
$$= \left(231 - \frac{441\sqrt{3}}{4}\right) \text{ cm}^{2}$$

46. A box contains 90 discs which are numberd from 1 to 90.

Total number of discs = 90

(i) Suppose event A of drawing a two digit number of discs (10 to 90 = 81).

$$\therefore P(A) = \frac{\text{Total number of two digit number}}{\text{Total number of outcomes}}$$
$$= \frac{81}{90}$$
$$\therefore P(A) = \frac{9}{10}$$

(ii) Suppose event B of drawing a perfect square (1, 4, 9, 16, 25, 36, 49, 64, 81 = 9).

$$\therefore P(B) = \frac{\text{Total number of perfect square}}{\text{Total number of outcomes}}$$
$$= \frac{9}{90}$$
$$\therefore P(B) = \frac{1}{10}$$

(iii) Suppose event C of drawing a number divisible by 5 (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90 = 18).

 $\therefore P(C) = \frac{\text{Total number of divisible by 5}}{\text{Total number of outcomes}}$ $\therefore P(C) = \frac{18}{90}$ $\therefore P(C) = \frac{1}{5}$

Section-D

47.	Suppose, the numerator is x and the denomenator is y .	
	the fraction = $\frac{x}{y}$	
	According to the first condition;	
	$\frac{x+1}{x+1} = 1$	
	y-1 x + 1 = y - 1	
	x - y = -2	(1)
	According to the second condition:	(1)
	$\underline{x} = \underline{1}$	
	y+1 2 2x - y + 1	
	2x - y + 1 2x - y = 1	(2)
	Subtracting equation (1) and (2)	(2)
	x - y = -2	
	2x - y = 1	
	<u> </u>	
	$\therefore -x = -3$	
	$\therefore x = 3$	
	Put $x = 3$ in equation (1)	
	x - y = -2	
	$\therefore 5 - y - 2$	
	x = 3	
	Hence, the fraction = $\frac{1}{y} = \frac{1}{5}$	
48.	Given that,	(1)
	2x + 3y = 11	(1)
	x - 2y = -12	(2)
	Lets multiply equation (2) by 2 and subtract from equation (1), 2x + 3y = 11	
	2x + 3y = 11 $2x - 4y = -24$	
	2x - 4y = -24	
	\therefore 7 $v = 35$	
	35	
	y = 7	
	y = 5 Put $y = 5$ in equation (1)	
	2x + 3(5) = 11	
	2x + 15 = 11	
	2x = 11 - 15	
	2x = -4	
	$r = \frac{4}{2}$	
	r = -2	
	• Put $r = -2$ and $v = 5$	
	in $v = kx + 9$	
	$\therefore 5 = k(-2) + 9$	
	$\therefore 5-9=-2k$	
	\therefore $-4 = -2k$	
	$k = \frac{-4}{2}$	
_	··· N 2	

49. Given : S and T are points on sides PR and QR of \triangle PQR such that $\angle P = \angle RTS$.

 $\angle RPQ = \angle RTS$

 $\angle PRQ = \angle SRT$ (Common angles)

- $\therefore \Delta \text{ RPQ} \sim \Delta \text{ RTS}$ (AA similarity criterion)
- 50. Given: In ABC, a line parallel to side BC intersects AB and AC at D and E respectively.

Proof : Join BE and CD and also draw DM \perp AC and EN \perp AB.

Then,
$$ADE = \frac{1}{2} \times AD \times EN$$
,
 $BDE = \frac{1}{2} \times DB \times EN$,
 $ADE = \frac{1}{2} \times AE \times DM$ and
 $DEC = \frac{1}{2} \times EC \times DM$.
 $\therefore \frac{ADE}{BDE} = \frac{\frac{1}{2} \times AD \times EN}{\frac{1}{2} \times DB \times EN} = \frac{AD}{DB}$...(1)
and $\frac{ADE}{DEC} = \frac{\frac{1}{2} \times AE \times DM}{\frac{1}{2} \times EC \times DM} = \frac{AE}{EC}$...(2)

Now, Δ BDE and Δ DEC are triangles on the same base DE and between the parallel BC and DE.

then,
$$BDE = DEC$$
 ...(3)

Hence from eq^n . (1), (2) and (3),

$$\frac{AD}{DB} = \frac{AE}{EC}$$

Here, actual height of tree is AC - BD, bend part is BD.

In $\triangle ABC$, $\angle C = 90^{\circ}$ $tan D = \frac{BC}{CD}$ $\therefore \quad tan \ 30^\circ = \frac{BC}{15}$ \therefore tan 30° × 15 = BC \therefore BC = $\frac{1}{\sqrt{3}} \times 15$ $\therefore \quad BC = \frac{5 \times 3}{\sqrt{3}}$ $\therefore BC = \frac{5 \times \sqrt{3} \times \sqrt{3}}{\sqrt{3}}$ \therefore BC = 5 $\sqrt{3}$ m Now, AB = BDlet, sec $30^\circ = \frac{BD}{CD}$ $\therefore \quad \frac{2}{\sqrt{3}} = \frac{BD}{15}$ \therefore DB = $\frac{15 \times 2}{\sqrt{3}}$ $\therefore \text{ DB} = \frac{5 \times \sqrt{3} \times \sqrt{3} \times 2}{\sqrt{3}}$ \therefore DB = 10 $\sqrt{3}$ m \therefore AB = $10\sqrt{3}$ m Total height AC = AB + BC $= 10\sqrt{3} + 5\sqrt{3}$ $= 15\sqrt{3}$ m 52. 6 cm 26 cm 3 cr 5 cm base of cylinder base of cone

Total height of the rocket = 26 cm

- \therefore Height of the cone + height of the cylinder = 26 cm
- \therefore 6 cm + Height of the cylinder = 26 cm \therefore Height of the cylinder = 20 cm Cone Cylinder d = 5 cmd = 3 cm $\therefore r = \frac{5}{2} = 2.5 \text{ cm} \therefore \text{ R} = \frac{3}{2} = 1.5 \text{ cm}$ $\therefore h = 6 \text{ cm}$ H = 20 cm $l = \sqrt{r^2 + h^2}$ $l = \sqrt{(2.5)^2 + (6)^2}$ $\therefore l = \sqrt{6.25 + 36}$ $\therefore l = \sqrt{42.25}$ $\therefore l = 6.5 \text{ cm}$ So, the area to be painted orange = TSA of the cone – Base area of the cylinder $= \pi r(l+r) - \pi R^2$ $= [3.14 \times 2.5 \times (6.5 + 2.5)] - (3.14 \times 1.5 \times 1.5)$ $= (3.14 \times 2.5 \times 9) - (3.14 \times 1.5 \times 1.5)$ = 70.65 - 7.065 $= 63.585 \text{ cm}^2$ Now, the area to be painted yellow = CSA of the cylinder + Area of one base of the cylinder $= 2\pi RH + \pi R^2$

 - $=\pi R(2H + R)$
 - $= 3.14 \times 1.5 \times [2(20) + 1.5]$
 - $= 3.14 \times 1.5 \times 41.5 = 195.465 \text{ cm}^2$
- **53.** Cylindrical glass Hemisphere

 $d = 5 \, {\rm cm}.$ d = 5 cm $\therefore r = \frac{5}{2} \text{ cm} \qquad r = \frac{5}{2} \text{ cm}$ $\therefore h = 10 \text{ cm}$

The Apparent capacity of the glass = $\pi r^2 h$

$$= 3.14 \times \frac{5}{2} \times \frac{5}{2} \times 10$$
$$= 1.57 \times 5 \times 5 \times 5$$
$$= 196.25 \text{ cm}^{3}$$
emisphere = $\frac{2}{2} \pi r^{3}$

Volume of hemisphere = $\frac{2}{3}$

$$= \frac{2}{3} \times 3.14 \times \frac{5}{2} \times \frac{5}{2} \times \frac{5}{2}$$

= 32.71 cm³

So, the actual capacity of the glass

= Apparent capacity glass - Volume of the hemisphere

 $= 163.54 \text{ cm}^3$

54.	Weight (in kg)	Number of students (fi)	cf
	40 - 45	2	2
	45 - 50	3	5
	50 - 55	8	13
	55 - 60	6	19
	60 - 65	6	25
	65 - 70	3	28
	70 – 75	2	30
		n = 30	

Here, n = 30

 \therefore Since the 15th observation is contained in class 55-60, the median class is 55-60.

Then, l = lower limit of median class = 55

cf = Cumulative frequency of class preceding the median class = 13

- f = frequency of median class = 6
- h = class size = 5

Median M =
$$l + \left(\frac{n}{2} - cf\right) \times h$$

 \therefore M = 55 + $\left(\frac{15 - 13}{6}\right) \times 5$
 \therefore M = 55 + $\frac{2 \times 5}{6}$
 \therefore M = 55 + 1.67

So, median weight is 56.67 kg.